ICERM Conference on
Computational Challenges in the Theory of Lattices
Providence, April 2018

Variations and Applications
 of Voronoi's algorithm

Achill Schürmann (Universität Rostock)

PRELUDE
 Voronoi's Algorithm
 - classically -

Lattices and Quadratic Forms

Lattices and Quadratic Forms

- Every lattice basis $A \in \mathrm{GL}_{n}(\mathbb{R})$ of a lattice $L=A \mathbb{Z}^{n}$ defines a positive definite symmetric (Gram) matrix $Q=A^{t} A$.

$$
\mathcal{S}_{>0}^{n}:=\left\{Q \in \mathbb{R}^{n \times n}: Q \text { symmetric and positive definite }\right\}
$$

Lattices and Quadratic Forms

- Every lattice basis $A \in \mathrm{GL}_{n}(\mathbb{R})$ of a lattice $L=A \mathbb{Z}^{n}$ defines a positive definite symmetric (Gram) matrix $Q=A^{t} A$.

$$
\mathcal{S}_{>0}^{n}:=\left\{Q \in \mathbb{R}^{n \times n}: Q \text { symmetric and positive definite }\right\}
$$

- $Q \in \mathcal{S}_{>0}^{n}$ defines a pos. def. quadratic form (PQF)

$$
Q[x]=x^{t} Q x=\sum_{i=1}^{n} q_{i i} x_{i}^{2}+2 \sum_{i<j} q_{i j} x_{i} x_{j}
$$

Different bases of a lattice yield integrally equivalent PQFs:

$$
\begin{gathered}
L=A \mathbb{Z}^{n} \quad \Leftrightarrow \quad L=(A U) \mathbb{Z}^{n} \text { for } U \in \mathrm{GL}_{n}(\mathbb{Z}) \\
A^{t} A=Q \sim Q^{\prime}=U^{t} Q U=(A U)^{t}(A U)
\end{gathered}
$$

Reduction Theory

for positive definite quadratic forms
$\mathrm{GL}_{n}(\mathbb{Z})$ acts on $\mathcal{S}_{>0}^{n}$ by $Q \mapsto U^{t} Q U$

Task of a reduction theory is to provide a fundamental domain
Classical reductions were obtained by Lagrange, Gauß, Korkin and Zolotareff, Minkowski and others... All the same for $n=2$:

Voronoi's reduction idea

Georgy Voronoi (1868-1908)

Observation: The fundamental domain can be obtained from polyhedral cones that are spanned by rank-I forms only

Voronoi's reduction idea

Georgy Voronoi (1868-1908)

Observation: The fundamental domain can be obtained from polyhedral cones that are spanned by rank-I forms only

Voronoi's algorithm gives a recipe for the construction of a complete list of such polyhedral cones up to $\mathrm{GL}_{n}(\mathbb{Z})$-equivalence

Perfect Forms

Perfect Forms

$$
\min (Q)=\min _{x \in \mathbb{Z}^{n} \backslash\{0\}} Q[x] \quad \text { is the arithmetical minimum }
$$

Perfect Forms

$\min (Q)=\min _{x \in \mathbb{Z}^{n} \backslash\{0\}} Q[x] \quad$ is the arithmetical minimum

Q is uniquely determined by $\min (Q)$ and
$Q \in \mathcal{S}_{>0}^{n}$ perfect \Leftrightarrow

$$
\operatorname{Min} Q=\left\{x \in \mathbb{Z}^{n}: Q[x]=\min (Q)\right\}
$$

Perfect Forms

$$
\min (Q)=\min _{x \in \mathbb{Z}^{n} \backslash\{0\}} Q[x] \quad \text { is the arithmetical minimum }
$$

Q is uniquely determined by $\min (Q)$ and
$Q \in \mathcal{S}_{>0}^{n}$ perfect \Leftrightarrow

$$
\operatorname{Min} Q=\left\{x \in \mathbb{Z}^{n}: Q[x]=\min (Q)\right\}
$$

For $Q \in \mathcal{S}_{>0}^{n}$, its Voronoi cone is $\mathcal{V}(Q)=\operatorname{cone}\left\{x x^{t}: x \in \operatorname{Min} Q\right\}$

Perfect Forms

$$
\min (Q)=\min _{x \in \mathbb{Z}^{n} \backslash\{0\}} Q[x] \quad \text { is the arithmetical minimum }
$$

Q is uniquely determined by $\min (Q)$ and
$Q \in \mathcal{S}_{>0}^{n}$ perfect \Leftrightarrow

$$
\operatorname{Min} Q=\left\{x \in \mathbb{Z}^{n}: Q[x]=\min (Q)\right\}
$$

For $Q \in \mathcal{S}_{>0}^{n}$, its Voronoi cone is $\mathcal{V}(Q)=\operatorname{cone}\left\{x x^{t}: x \in \operatorname{Min} Q\right\}$

THM: Voronoi cones give a polyhedral tessellation of $\mathcal{S}_{>0}^{n}$ and there are only finitely many up to $\mathrm{GL}_{n}(\mathbb{Z})$-equivalence.

Perfect Forms

$\min (Q)=\min _{x \in \mathbb{Z}^{n} \backslash\{0\}} Q[x] \quad$ is the arithmetical minimum
Q is uniquely determined by $\min (Q)$ and
$Q \in \mathcal{S}_{>0}^{n}$ perfect \Leftrightarrow

$$
\operatorname{Min} Q=\left\{x \in \mathbb{Z}^{n}: Q[x]=\min (Q)\right\}
$$

For $Q \in \mathcal{S}_{>0}^{n}$, its Voronoi cone is $\mathcal{V}(Q)=\operatorname{cone}\left\{x x^{t}: x \in \operatorname{Min} Q\right\}$

THM: Voronoi cones give a polyhedral tessellation of $\mathcal{S}_{>0}^{n}$ and there are only finitely many up to $\mathrm{GL}_{n}(\mathbb{Z})$-equivalence. (Voronoi cones are full dimensional if and only if Q is perfect!)

Ryshkov Polyhedron

The set of all positive definite quadratic forms / matrices with arithmetical minimum at least I is called Ryshkov polyhedron

Ryshkov Polyhedron

The set of all positive definite quadratic forms / matrices with arithmetical minimum at least I is called Ryshkov polyhedron

$$
\mathcal{R}=\left\{Q \in \mathcal{S}_{>0}^{n}: Q[x] \geq I \text { for all } x \in \mathbb{Z}^{n} \backslash\{0\}\right\}
$$

Ryshkov Polyhedron

The set of all positive definite quadratic forms / matrices with arithmetical minimum at least I is called Ryshkov polyhedron

$$
\mathcal{R}=\left\{Q \in \mathcal{S}_{>0}^{n}: Q[x] \geq \mid \text { for all } x \in \mathbb{Z}^{n} \backslash\{0\}\right\}
$$

- \mathcal{R} is a locally finite polyhedron

Ryshkov Polyhedron

The set of all positive definite quadratic forms / matrices with arithmetical minimum at least I is called Ryshkov polyhedron

$$
\mathcal{R}=\left\{Q \in \mathcal{S}_{>0}^{n}: Q[x] \geq \mid \text { for all } x \in \mathbb{Z}^{n} \backslash\{0\}\right\}
$$

- \mathcal{R} is a locally finite polyhedron
- Vertices of \mathcal{R} are perfect

Voronoi's Algorithm

Start with a perfect form Q

1. SVP: Compute Min Q and describing inequalities of the polyhedral cone

$$
\mathcal{P}(Q)=\left\{Q^{\prime} \in \mathcal{S}^{n}: Q^{\prime}[x] \geq 1 \text { for all } x \in \operatorname{Min} Q\right\}
$$

2. PolyRepConv: Enumerate extreme rays R_{1}, \ldots, R_{k} of $\mathcal{P}(Q)$
3. SVPs: Determine contiguous perfect forms $Q_{i}=Q+\alpha R_{i}, i=1, \ldots, k$
4. ISOMs: Test if Q_{i} is arithmetically equivalent to a known form
5. Repeat steps 1.-4. for new perfect forms

Computational Results

- BOTTLENECK: Computing vertices of polyhedra!
- Martinet (2003): "The existence of E_{8} [...] makes hopeless any attempt [...] in dimension 8."

Computational Results

- BOTTLENECK: Computing vertices of polyhedra!
- Martinet (2003): "The existence of E_{8} [...] makes hopeless any attempt [...] in dimension 8. "

n	\# perfect forms	author(s)
2	1	Lagrange, 1773
3	1	Gauß, 1840
4	2	Korkine \& Zolotareff, 1877
5	3	Korkine \& Zolotareff, 1877
6	7	Barnes, 1975
7	33	Jaquet-Chiffelle, 1991
8	10916	Dutour Sikirić, Sch. \& Vallentin, 2007
9	>500000	

Computer assisted proof with Recursive Adj. Decomp. Method (ADM) for vertex enumeration up to symmetries
(showing that the " E_{8}-polytope" has 25075566937584 vertices in 83092 orbits)

Computational Results

- BOTTLENECK: Computing vertices of polyhedra!
- Martinet (2003): "The existence of E_{8} [...] makes hopeless any attempt [...] in dimension 8. "

n	\# perfect forms	author(s)
2	1	Lagrange, 1773
3	1	Gauß, 1840
4	2	Korkine \& Zolotareff, 1877
5	3	Korkine \& Zolotareff, 1877
6	7	Barnes, 1957
7	33	Jaquet-Chiffelle, 1991
8	10916	Dutour Sikirić, Sch. \& Vallentin, 2007
9	>5000000	Wessel van Woerden, 20I8 ?!

Computer assisted proof with Recursive Adj. Decomp. Method (ADM) for vertex enumeration up to symmetries
(showing that the " E_{8}-polytope" has 25075566937584 vertices in 83092 orbits)

Adjacency Decomposition Method
(for vertex enumeration)

Adjacency Decomposition Method

(for vertex enumeration)

- Find initial orbit(s) / representing vertice(s)

Adjacency Decomposition Method

(for vertex enumeration)

- Find initial orbit(s) / representing vertice(s)
- For each new orbit representative
- enumerate neighboring vertices

Adjacency Decomposition Method

 (for vertex enumeration)- Find initial orbit(s) / representing vertice(s)
- For each new orbit representative
- enumerate neighboring vertices
- add as orbit representative if in a new orbit

Adjacency Decomposition Method

 (for vertex enumeration)- Find initial orbit(s) / representing vertice(s)
- For each new orbit representative
- enumerate neighboring vertices (up to symmerry)
- add as orbit representative if in a new orbit

Adjacency Decomposition Method

 (for vertex enumeration)- Find initial orbit(s) / representing vertice(s)
- For each new orbit representative
- enumerate neighboring vertices (up to symmetry)
- add as orbit representative if in a new orbit

Representation conversion problem

BOTTLENECK: Stabilizer and In-Orbit computations
=> Need of efficient data structures and algorithms for permutation groups: BSGS, (partition) backtracking

Representation Conversion in practice

Representation Conversion in practice

Best known Algorithm:

Representation Conversion in practice

Best known Algorithm:

A C++-Tool sym also available through polymake

- helps to compute linear automorphism groups
- converts polyhedral representations using

Thomas Rehn (Phd 2014)

Recursive Decomposition Methods (Incidence/Adjacency)

Applicaton: Lattice Sphere Packings

The lattice sphere packing problem can be phrased as:

Minimize $(\operatorname{det} Q)^{1 / n}$ on

$$
\mathcal{R}=\left\{Q \in \mathcal{S}_{>0}^{n}: Q[x] \geq 1 \text { for all } x \in \mathbb{Z}^{n} \backslash\{0\}\right\}
$$

Applicaton: Lattice Sphere Packings

The lattice sphere packing problem can be phrased as:

Minimize $(\operatorname{det} Q)^{1 / n}$ on

$$
\mathcal{R}=\left\{Q \in \mathcal{S}_{>0}^{n}: Q[x] \geq 1 \text { for all } x \in \mathbb{Z}^{n} \backslash\{0\}\right\}
$$

$\min _{Q \in \mathcal{R}}(\operatorname{det} Q)^{1 / n}$ is attained at vertices of $\mathcal{R} \quad$ (perfect forms)

Part II:

Koecher's generalization and T-perfect forms

Koecher's generalization

1960/6I Max Koecher generalized
Voronoi's reduction theory and proofs to a setting with a self-dual cone C

Max Koecher, 1924-1990

Koecher's generalization

1960/6I Max Koecher generalized Voronoi's reduction theory and proofs to a setting with a self-dual cone C

Max Koecher, 1924-I990

Under certain conditions, he shows that
C is covered by a tessellation of polyhedral Voronoi cones and "approximated from inside" by a Ryshkov polyhedron

Koecher's generalization

1960/6I Max Koecher generalized Voronoi's reduction theory and proofs to a setting with a self-dual cone C

Max Koecher, 1924-1990

Under certain conditions, he shows that
C is covered by a tessellation of polyhedral Voronoi cones and "approximated from inside" by a Ryshkov polyhedron

Can in particular be applied to obtain reduction domains for the action of $\mathrm{LL}_{n}\left(\mathcal{O}_{K}\right)$ on suitable quadratic spaces

Applications in Math

Ryshkov Polyhedron

$\mathrm{GL}_{n}\left(\mathcal{O}_{K}\right)$ symmetric

Applications in Math

Ryshkov Polyhedron

$\mathrm{GL}_{n}\left(\mathcal{O}_{K}\right)$ symmetric

Vertices / Perfect Forms:

- Reduction theory
- Hermite constant

Polyhedral complex:

- Cohomology of $\mathrm{GL}_{n}\left(\mathcal{O}_{K}\right)$
- Hecke operators
- Compactifications of moduli spaces of Abelian varieties

Applications in Math

Ryshkov Polyhedron

$\mathrm{GL}_{n}\left(\mathcal{O}_{K}\right)$ symmetric

See Mathieu's talk
after the coffee break!

Vertices / Perfect Forms:

- Reduction theory
- Hermite constant

Polyhedral complex:

- Cohomology of $\mathrm{GL}_{n}\left(\mathcal{O}_{K}\right)$
- Hecke operators
- Compactifications of moduli spaces of Abelian varieties

[^0]
Embedding Koecher's theory

For practical computations: Koecher's theory can be embedded into a linear subspace T
in some higher dimensional space of symmetric matrices

Embedding Koecher's theory

For practical computations: Koecher's theory can be embedded into a linear subspace T
in some higher dimensional space of symmetric matrices

IDEA (Bergé, Martinet, Sigrist, 1992):
Intersect Ryshkov polyhedron \mathcal{R} with a linear subspace $T \subset \mathcal{S}^{n}$

Embedding Koecher's theory

For practical computations: Koecher's theory can be embedded into a linear subspace T
in some higher dimensional space of symmetric matrices

IDEA (Bergé, Martinet, Sigrist, 1992):
Intersect Ryshkov polyhedron \mathcal{R} with a linear subspace $T \subset \mathcal{S}^{n}$

DEF: $\quad Q \in T \cap \mathcal{S}_{>0}^{n}$ is T-perfect if it is a vertex of $\mathcal{R} \cap T$

Voronoi's Algorithm

 for a linear subspace T

SVPs: Obtain a T-perfect form Q

1. SVP: Compute Min Q and describing inequalities of the polyhedral cone

$$
\mathcal{P}(Q)=\left\{Q^{\prime} \in T: Q^{\prime}[x] \geq 1 \text { for all } x \in \operatorname{Min} Q\right\}
$$

2. PolyRepConv: Enumerate extreme rays R_{1}, \ldots, R_{k} of $\mathcal{P}(Q)$
3. For the indefinite $R_{i}, i=1, \ldots, k$

SVPs: Determine contiguous perfect forms $Q_{i}=Q+\alpha R_{i}$
4. T-ISOMs: Test if Q_{i} is T-equivalent to a known form
5. Repeat steps 1.-4. for new perfect forms

Voronoi's Algorithm

 for a linear subspace T

SVPs: Obtain a T-perfect form Q

1. SVP: Compute Min Q and describing inequalities of the polyhedral cone

$$
\mathcal{P}(Q)=\left\{Q^{\prime} \in T: Q^{\prime}[x] \geq 1 \text { for all } x \in \operatorname{Min} Q\right\}
$$

2. PolyRepConv: Enumerate extreme rays R_{1}, \ldots, R_{k} of $\mathcal{P}(Q)$
3. For the indefinite $R_{i}, i=1, \ldots, k$

SVPs: Determine contiguous perfect forms $Q_{i}=Q+\alpha R_{i}$
4. T-ISOMs: Test if Q_{i} is T-equivalent to a known form

Possible
existence of
5. Repeat steps 1.-4. for new perfect forms

G-invariant theory

$Q, Q^{\prime} \in T \cap \mathcal{S}_{>0}^{n}$ are called T-equivalent, if $\exists U \in \mathrm{GL}_{n}(\mathbb{Z})$ with

$$
Q^{\prime}=U^{t} Q U \quad \text { and } \quad T=U^{t} T U
$$

For a finite group $G \subset \mathrm{GL}_{n}(\mathbb{Z})$ the space of invariant forms

$$
T_{G}:=\left\{Q \in \mathcal{S}^{n}: G \subset \operatorname{Aut} Q\right\}
$$

is a linear subspace of \mathcal{S}^{n};
$T_{G} \cap \mathcal{S}_{>0}^{n}$ is called Bravais space

THM (Jaquet-Chiffelle, 1995):

$$
\left\{T_{G} \text {-perfect } Q: \lambda(Q)=1\right\} / \sim_{T_{G}} \text { finite }
$$

Applicaton: Lattice Sphere Packings

 with prescribed symmetry| n | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{8}$ | $\mathbf{1 0}$ | $\mathbf{1 2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# \mathcal{E}-perfect | 1 | 1 | 2 | 5 | 1628 | $?$ |
| maximum δ | $0.9069 \ldots$ | $0.6168 \ldots$ | $0.3729 \ldots$ | $0.2536 \ldots$ | $0.0360 \ldots$ | |

Perfect Eisenstein forms

n	2	4	6	8	10	12
$\# \mathcal{G}$-perfect	1	1	1	2	≥ 8192	$?$
maximum δ	$0.7853 \ldots$	$0.6168 \ldots$	$0.3229 \ldots$	$0.2536 \ldots$		

Perfect Gaussian forms

n	4	8	12	16
\# Q-perfect	1	1	8	$?$
maximum δ	$0.6168 \ldots$	$0.2536 \ldots$	$0.03125 \ldots$	

Perfect Quaternion forms

PART III:

A new Generalization

Further Generalization? ... and application!

IDEA: Generalize Voronoi's theory to other convex cones and their duals

Further Generalization? ... and application!

IDEA: Generalize Voronoi's theory to other convex cones and their duals

In particular to the completely positive cone

Further Generalization? ... and application!

IDEA: Generalize Voronoi's theory to other convex cones and their duals

In particular to the completely positive cone

$$
\begin{aligned}
\mathcal{C P}{ }_{n}=\operatorname{cone}\left\{x x^{\top}: x \in \mathbb{R}_{\geq 0}^{n}\right\} \text { and its dual, the copositive cone } \\
\begin{aligned}
\mathcal{C O} \mathcal{P}_{n}=\left(\mathcal{C} \mathcal{P}_{n}\right)^{*} & =\left\{B \in \mathcal{S}^{n}:\langle A, B\rangle \geq 0 \text { for all } A \in \mathcal{C} \mathcal{P}_{n}\right\} \\
& =\left\{B \in \mathcal{S}^{n}: B[x] \geq 0 \text { for all } x \in \mathbb{R}_{\geq 0}^{n}\right\}
\end{aligned}
\end{aligned}
$$

$$
\mathcal{C} \mathcal{P}_{n} \quad \subset \quad \mathcal{S}_{>0}^{n} \quad \subset \mathcal{C O} \mathcal{P}_{n}
$$

$\langle A, B\rangle=\operatorname{Trace}(A \cdot B)$ denotes the standard inner product on \mathcal{S}^{n}

Application: Copositive Optimization

Application: Copositive Optimization

- Copositive optimization problems are convex conic problems

$$
\begin{gathered}
\min \langle C, Q\rangle \text { such that }\left\langle Q, A_{i}\right\rangle=b_{i}, i=I, \ldots, m \\
\text { and } Q \in \mathrm{CONE}
\end{gathered}
$$

Application: Copositive Optimization

- Copositive optimization problems are convex conic problems
$\min \langle C, Q\rangle$ such that $\left\langle Q, A_{i}\right\rangle=b_{i}, i=I, \ldots, m$
$\mathrm{CONE}=\mathbb{R}_{\geq 0}^{n}$
Linear Programming (LP)

Application: Copositive Optimization

- Copositive optimization problems are convex conic problems

$$
\min \langle C, Q\rangle \text { such that }\left\langle Q, A_{i}\right\rangle=b_{i}, i=I, \ldots, m
$$

$\mathrm{CONE}=\mathbb{R}_{\geq 0}^{n}$
Linear Programming (LP)
and $Q \in$ CONE
$\mathrm{CONE}=\mathcal{S}_{\geq 0}^{n}$
Semidefinite Programming (SDP)

Application: Copositive Optimization

- Copositive optimization problems are convex conic problems

$$
\min \langle C, Q\rangle \text { such that }\left\langle Q, A_{i}\right\rangle=b_{i}, i=1, \ldots, m
$$

$\mathrm{CONE}=\mathbb{R}_{\geq 0}^{n}$
Linear Programming (LP)

$\mathrm{CONE}=\mathcal{S}_{\geq 0}^{n}$
Semidefinite Programming (SDP)

Application: Copositive Optimization

- Copositive optimization problems are convex conic problems $\min \langle C, Q\rangle$ such that $\left\langle Q, A_{i}\right\rangle=b_{i}, i=I, \ldots, m$
$\mathrm{CONE}=\mathbb{R}_{\geq 0}^{n}$
Linear Programming (LP)

Copositive Programming (CP)
NP-hard (2000)

$$
\mathrm{CONE}=\mathcal{S}_{\geq 0}^{n}
$$

Semidefinite Programming (SDP)

Application: Copositive Optimization

- Copositive optimization problems are convex conic problems $\min \langle C, Q\rangle$ such that $\left\langle Q, A_{i}\right\rangle=b_{i}, i=I, \ldots, m$
$\mathrm{CONE}=\mathbb{R}_{\geq 0}^{n}$
Linear Programming (LP)

Copositive Programming (CP)
NP-hard (2000)

$$
\mathrm{CONE}=\mathcal{S}_{\geq 0}^{n}
$$

Semidefinite Programming (SDP)

Such problems have a duality theory and allow certificates for solutions!

cp-factorizations and certificates

DEF:
A finite set $X \subset \mathbb{R}_{\geq 0}^{n}$ is called a certificate for $Q \in \mathcal{S}^{n}$ being completely positive, if it gives a cp-factorization $Q=\sum_{x \in X} x x^{\top}$

cp-factorizations and certificates

DEF:
A finite set $X \subset \mathbb{R}_{\geq 0}^{n}$ is called a certificate for $Q \in \mathcal{S}^{n}$ being completely positive, if it gives a cp-factorization $Q=\sum_{x \in X} x x^{\top}$

PROBLEM: How to find a cp-factorization for a given Q ?

cp-factorizations and certificates

DEF:
A finite set $X \subset \mathbb{R}_{\geq 0}^{n}$ is called a certificate for $Q \in \mathcal{S}^{n}$ being completely positive, if it gives a cp-factorization $Q=\sum_{x \in X} x x^{\top}$

PROBLEM: How to find a cp-factorization for a given Q ?
Known approaches so far:

- Anstreicher, Burer and Dickinson (in Dickinson's thesis 2013) give an algorithm only for matrices in interior based on ellipsoid method
- Numerical heuristics have been proposed by Jarre, Schmallowsky (2009), Nie (2014), Sponsel and Dür (2014), Groetzner and Dür (preprint 2018)

cp-factorizations and certificates

DEF:
A finite set $X \subset \mathbb{R}_{\geq 0}^{n}$ is called a certificate for $Q \in \mathcal{S}^{n}$ being completely positive,
if it gives a cp-factorization $Q=\sum_{x \in X} x x^{\top}$
PROBLEM: How to find a cp-factorization for a given Q ?

Known approaches so far:

- Anstreicher, Burer and Dickinson (in Dickinson's thesis 2013) give an algorithm only for matrices in interior based on ellipsoid method
- Numerical heuristics have been proposed by Jarre, Schmallowsky (2009), Nie (2014), Sponsel and Dür (2014), Groetzner and Dür (preprint 2018)

Non of these approaches is exact and latter do not even guarantee to find solutions!

Copositive minimum

DEF: $\min _{\mathcal{C O P}} Q=\min _{x \in \mathbb{Z}_{\geq 0} \geq\{0\}} Q[x] \quad$ is the copositive minimum

Copositive minimum

DEF: $\min _{\mathcal{C O P}} Q=\min _{x \in \mathbb{Z}_{\geq 0}^{n} \backslash\{0\}} Q[x] \quad$ is the copositive minimum
Difficult to compute!

Copositive minimum

DEF: $\min _{\mathcal{C O P}} Q=\min _{x \in \mathbb{Z}_{\geq 0}^{n} \geq \backslash\{0\}} Q[x] \quad$ is the copositive minimum

Difficult to compute!

THM: (Bundfuss and Dür, 2008)
For $Q \in \operatorname{int} \mathcal{C O} \mathcal{P}_{n}$ we can construct a family of simplices Δ^{k} in the standard simplex $\Delta=\left\{x \in \mathbb{R}_{\geq 0}^{n}: x_{1}+\ldots x_{n}=I\right\}$ such that each Δ^{k} has vertices $v_{1}, \ldots v_{n}$ with $v_{i}^{\top} Q v_{j}>0$

Copositive minimum

DEF: $\min _{\mathcal{C O P}} Q=\min _{\left.x \in \mathbb{Z}_{\geq 0}^{n} \geq \backslash 0\right\}} Q[x] \quad$ is the copositive minimum

Difficult to compute!

THM: (Bundfuss and Dür, 2008)
For $Q \in \operatorname{int} \mathcal{C O} \mathcal{P}_{n}$ we can construct a family of simplices Δ^{k} in the standard simplex $\Delta=\left\{x \in \mathbb{R}_{\geq 0}^{n}: x_{1}+\ldots x_{n}=I\right\}$ such that each Δ^{k} has vertices $v_{1}, \ldots v_{n}$ with $v_{i}^{\top} Q v_{j}>0$

Computation in practice:

"Fincke-Pohst strategy" to compute $\min _{\mathcal{C O P}} Q$ in each cone Δ^{k}

Generalized Ryshkov polyhedron

Generalized Ryshkov polyhedron

The set of all copositive quadratic forms / matrices with copositive minimum at least I is called Ryshkov polyhedron

$$
\mathcal{R}=\left\{Q \in \mathcal{C O} \mathcal{P}_{n}: Q[x] \geq I \text { for all } x \in \mathbb{Z}_{\geq 0}^{n} \backslash\{0\}\right\}
$$

Generalized Ryshkov polyhedron

The set of all copositive quadratic forms / matrices with copositive minimum at least I is called Ryshkov polyhedron

$$
\mathcal{R}=\left\{Q \in \mathcal{C O} \mathcal{P}_{n}: Q[x] \geq I \text { for all } x \in \mathbb{Z}_{\geq 0}^{n} \backslash\{0\}\right\}
$$

Generalized Ryshkov polyhedron

The set of all copositive quadratic forms / matrices with copositive minimum at least I is called Ryshkov polyhedron

$$
\mathcal{R}=\left\{Q \in \mathcal{C O} \mathcal{P}_{n}: Q[x] \geq I \text { for all } x \in \mathbb{Z}_{\geq 0}^{n} \backslash\{0\}\right\}
$$

DEF: $Q \in \operatorname{int} \mathcal{C O} \mathcal{P}_{n}$ is called $\mathcal{C O P}$-perfect if and only if Q is uniquely determined by $\min _{\mathcal{C O P}} Q$ and

$$
\operatorname{Min}_{\mathcal{C O P}} Q=\left\{x \in \mathbb{Z}_{\geq 0}^{n}: Q[x]=\min _{\mathcal{C O P}} Q\right\}
$$

Generalized Ryshkov polyhedron

The set of all copositive quadratic forms / matrices with copositive minimum at least I is called Ryshkov polyhedron

$$
\mathcal{R}=\left\{Q \in \mathcal{C O} \mathcal{P}_{n}: Q[x] \geq I \text { for all } x \in \mathbb{Z}_{\geq 0}^{n} \backslash\{0\}\right\}
$$

DEF: $Q \in \operatorname{int} \mathcal{C O} \mathcal{P}_{n}$ is called $\mathcal{C O P}$-perfect if and only if Q is uniquely determined by $\min _{\mathcal{C O P}} Q$ and

$$
\operatorname{Min}_{\mathcal{C O P}} Q=\left\{x \in \mathbb{Z}_{\geq 0}^{n}: Q[x]=\min _{\mathcal{C O P}} Q\right\}
$$

- \mathcal{R} is a locally finite polyhedron (with dead-ends / rays)

Generalized Ryshkov polyhedron

The set of all copositive quadratic forms / matrices with copositive minimum at least I is called Ryshkov polyhedron

$$
\mathcal{R}=\left\{Q \in \mathcal{C O} \mathcal{P}_{n}: Q[x] \geq I \text { for all } x \in \mathbb{Z}_{\geq 0}^{n} \backslash\{0\}\right\}
$$

DEF: $Q \in \operatorname{int} \mathcal{C O} \mathcal{P}_{n}$ is called $\mathcal{C O P}$-perfect if and only if Q is uniquely determined by $\min _{\mathcal{C O P}} Q$ and

$$
\operatorname{Min}_{\mathcal{C O P}} Q=\left\{x \in \mathbb{Z}_{\geq 0}^{n}: Q[x]=\min _{\mathcal{C O P}} Q\right\}
$$

- \mathcal{R} is a locally finite polyhedron (with dead-ends / rays)
- Vertices of \mathcal{R} are $\mathcal{C O P}$-perfect

Voronoi-type simplex algorithm

 Input: $A \in \mathcal{S}_{>0}^{n}$
Voronoi-type simplex algorithm

 Input: $A \in \mathcal{S}_{>0}^{n}$COP-SVPs: Obtain an initial $\mathcal{C O} \mathcal{P}$-perfect matrix B_{p}

Voronoi-type simplex algorithm

 Input: $A \in \mathcal{S}_{>0}^{n}$COP-SVPs: Obtain an initial $\mathcal{C O} \mathcal{P}$-perfect matrix B_{p}
I. if $\left\langle B_{P}, A\right\rangle<0$ then output $A \notin \mathcal{C} \mathcal{P}_{n}$ (with witness B_{p})
2. LP: if $A \in$ cone $\left\{x x^{\top}: x \in \operatorname{Min}_{\mathcal{C O P}} B_{p}\right\}$ then output $A \in \mathcal{C} \tilde{\mathcal{P}}_{n}$
3. COP-SVP: Compute Min $_{\mathcal{C O P} B_{p} \text { and the polyhedral cone }}$

$$
\mathcal{P}\left(B_{P}\right)=\left\{B \in \mathcal{S}^{n}: B[x] \geq I \text { for all } x \in \operatorname{Min}_{\mathcal{C O P}} B_{p}\right\}
$$

4. PolyRepConv: Determine a generator R of an extreme ray of $\mathcal{P}\left(B_{P}\right)$

$$
\text { with }\langle A, R\rangle<0 \text {. }
$$

5. LPs: if $R \in \mathcal{C O} \mathcal{P}_{n}$ then output $A \notin \mathcal{C} \mathcal{P}_{n}$ (with witness R)
6. COP-SVPs: Determine the contiguous $\mathcal{C O P}$-perfect matrix

$$
B_{N}:=B_{P}+\lambda R \text { with } \lambda>0 \text { and } \min _{\mathcal{C O P}} B_{N}=1
$$

7. Set $B_{P}:=B_{N}$ and goto I.

Voronoi-type simplex algorithm

 Input: $A \in \mathcal{S}_{>0}^{n}$ $\mathcal{C} \tilde{\mathcal{P}}_{n}=$ cone $\left\{x x^{\top}: x \in \mathbb{Q}^{n}\right\}$COP-SVPs: Obtain an initial $\mathcal{C O} \mathcal{P}$-perfect matrix B_{p}
I. if $\left\langle B_{p}, A\right\rangle<0$ then output $A \notin \mathcal{C} \mathcal{P}_{n}$ (with witness B_{p})
2. LP: if $A \in$ cone $\left\{x x^{\top}: x \in \operatorname{Min}_{\mathcal{C O P}} B_{P}\right\}$ then output $A \in \mathcal{C} \tilde{P}_{n}$
3. COP-SVP: Compute Min $_{\mathcal{C O P} B_{p} \text { and the polyhedral cone }}$

$$
\mathcal{P}\left(B_{p}\right)=\left\{B \in \mathcal{S}^{n}: B[x] \geq I \text { for all } x \in \operatorname{Min}_{\mathcal{C O P}} B_{p}\right\}
$$

4. PolyRepConv: Determine a generator R of an extreme ray of $\mathcal{P}\left(B_{P}\right)$

$$
\text { with }\langle A, R\rangle<0 \text {. }
$$

5. LPs: if $R \in \mathcal{C O} \mathcal{P}_{n}$ then output $A \notin \mathcal{C} \mathcal{P}_{n}$ (with witness R)
6. COP-SVPs: Determine the contiguous $\mathcal{C O P}$-perfect matrix

$$
B_{N}:=B_{P}+\lambda R \text { with } \lambda>0 \text { and } \min _{\mathcal{C O P}} B_{N}=1
$$

7. Set $B_{P}:=B_{N}$ and goto I.

Voronoi-type simplex algorithm

 Input: $A \in \mathcal{S}_{>0}^{n}$ $\mathcal{C} \tilde{\mathcal{P}}_{n}=$ cone $\left\{x x^{\top}: x \in \mathbb{Q}^{n}\right\}$COP-SVPs: Obtain an initial $\mathcal{C O} \mathcal{P}$-perfect matrix B_{p}
I. if $\left\langle B_{p}, A\right\rangle<0$ then output $A \notin \mathcal{C} \mathcal{P}_{n}$ (with witness B_{p})
2. LP: if $A \in$ cone $\left\{x x^{\top}: x \in \operatorname{Min}_{\mathcal{C O P}} B_{P}\right\}$ then output $A \in \mathcal{C} \tilde{P}_{n}$
3. COP-SVP: Compute Min $_{\mathcal{C O P} B_{p} \text { and the polyhedral cone }}$

$$
\mathcal{P}\left(B_{p}\right)=\left\{B \in \mathcal{S}^{n}: B[x] \geq I \text { for all } x \in \operatorname{Min}_{\mathcal{C O P}} B_{p}\right\}
$$

4. PolyRepConv: Determine a generator R of an extreme ray of $\mathcal{P}\left(B_{p}\right)$

$$
\text { with }\langle A, R\rangle<0 \text {. (flexible "pivot-rule") }
$$

5. LPs: if $R \in \mathcal{C O} \mathcal{P}_{n}$ then output $A \notin \mathcal{C} \mathcal{P}_{n}$ (with witness R)
6. COP-SVPs: Determine the contiguous $\mathcal{C O P}$-perfect matrix

$$
B_{N}:=B_{P}+\lambda R \text { with } \lambda>0 \text { and } \min _{\mathcal{C O P}} B_{N}=1
$$

7. Set $B_{p}:=B_{N}$ and goto I.

A copositive starting point

THM: $\left(\begin{array}{rrrrr}2 & -1 & 0 & \ldots & 0 \\ -1 & 2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \ldots & 0 & -1 & 2\end{array}\right)$ is $\mathcal{C O} \mathcal{P}$-perfect

A copositive starting point

THM: $\left(\begin{array}{rrrrr}2 & -1 & 0 & \ldots & 0 \\ -1 & 2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \ldots & 0 & -1 & 2\end{array}\right)$

is $\mathcal{C O P}$-perfect

A copositive starting point

THM: $\left(\begin{array}{rrrrc}2 & -1 & 0 & \ldots & 0 \\ -1 & 2 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \ldots & 0 & -1 & 2\end{array}\right)$

Proof. Matrix $Q_{\mathrm{A}_{n}}$ is positive definite since

is $\mathcal{C O P}$-perfect

$$
Q_{\mathrm{A}_{n}}[x]=x_{1}^{2}+\sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}+x_{n}^{2} \quad \text { for } x \in \mathbb{R}
$$

In particular it lies in the interior of the copositive cone. Furthermore,

$$
\min _{\mathcal{C O P}} Q_{\mathrm{A}_{n}}=2 \quad \text { with } \quad \operatorname{Min}_{\mathcal{C O P}} Q_{\mathrm{A}_{n}}=\left\{\sum_{i=j}^{k} e_{j}: 1 \leq j \leq k \leq n\right\}
$$

Interior cases

(algorithm terminates)

EX: $\quad A=\left(\begin{array}{ll}6 & 3 \\ 3 & 2\end{array}\right)$

Interior cases

(algorithm terminates)

EX: $\quad A=\left(\begin{array}{ll}6 & 3 \\ 3 & 2\end{array}\right)$

Interior cases

(algorithm terminates)

EX: $\quad A=\left(\begin{array}{ll}6 & 3 \\ 3 & 2\end{array}\right)$

Interior cases

(algorithm terminates)

EX: $\quad A=\left(\begin{array}{ll}6 & 3 \\ 3 & 2\end{array}\right)$

Interior cases

(algorithm terminates)

EX: $\quad A=\left(\begin{array}{ll}6 & 3 \\ 3 & 2\end{array}\right)$

Starting with $Q_{A_{2}}$ one iteration of the algorithm finds the $\mathcal{C O} \mathcal{P}$-perfect matrix $B_{P}=\left(\begin{array}{cc}1 & -3 / 2 \\ -3 / 2 & 3\end{array}\right)$ and

$$
A=\binom{1}{0}\binom{1}{0}^{\top}+\binom{1}{1}\binom{1}{1}^{\top}+\binom{2}{1}\binom{2}{1}^{\top}
$$

Boundary cases from $\mathcal{C} \tilde{\mathcal{P}}_{n}$

 (algorithm terminates with a suitable pivot-rule)

EX: $\left(\begin{array}{lllll}8 & 5 & 1 & 1 & 5 \\ 5 & 8 & 5 & 1 & 1 \\ 1 & 5 & 8 & 5 & 1 \\ 1 & 1 & 5 & 8 & 5 \\ 5 & 1 & 1 & 5 & 8\end{array}\right) \quad \begin{gathered} \\ \text { from Groetzner, Dür (2018) } \\ \text { not solved by their algorithms }\end{gathered}$

Boundary cases from $\mathcal{C} \tilde{\mathcal{P}}_{n}$

 (algorithm terminates with a suitable pivot-rule)

EX: $\left(\begin{array}{lllll}8 & 5 & 1 & 1 & 5 \\ 5 & 8 & 5 & 1 & 1 \\ 1 & 5 & 8 & 5 & 1 \\ 1 & 1 & 5 & 8 & 5 \\ 5 & 1 & 1 & 5 & 8\end{array}\right) \quad \begin{gathered}\text { } \\ \text { from Groetzner, Dür (20।8) } \\ \text { not solved by their algorithms }\end{gathered}$

Starting with $Q_{A_{5}}$, our algorithm finds a cp-factorization after 5 iterations

$$
\begin{array}{ll}
v_{1}=(0,0,0,1,1) & v_{6}=(1,0,0,0,1) \\
v_{2}=(0,0,1,1,0) & v_{7}=(1,0,0,1,2) \\
v_{3}=(0,0,1,2,1) & v_{8}=(1,1,0,0,0) \\
v_{4}=(0,1,1,0,0) & v_{9}=(1,2,1,0,0) \\
v_{5}=(0,1,2,1,0) & v_{10}=(2,1,0,0,1)
\end{array}
$$

giving a certificate for the matrix to be completely positive

Exterior cases

(algorithm conjectured to terminate)

EX: $\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 1 & 0 & 0 & 1 & 6\end{array}\right) \quad$ from $\operatorname{Nie}(2014)$

Exterior cases

(algorithm conjectured to terminate)

EX: $\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 1 & 0 & 0 & 1 & 6\end{array}\right) \quad$ from $\operatorname{Nie}(2014)$

Starting with $Q_{A_{5}}$, after 18 iterations our algorithm finds the $\mathcal{C O P}$-perfect

$$
\left(\begin{array}{ccccc}
363 / 5 & -2126 / 35 & 2879 / 70 & 608 / 21 & -4519 / 210 \\
-2126 / 35 & 1787 / 35 & -347 / 10 & 1025 / 42 & 253 / 14 \\
2879 / 70 & -347 / 10 & 829 / 35 & -1748 / 105 & 371 / 30 \\
608 / 21 & 1025 / 42 & -1748 / 105 & 1237 / 105 & -601 / 70 \\
-4519 / 210 & 253 / 14 & 371 / 30 & -601 / 70 & 671 / 105
\end{array}\right)
$$

giving a certificate for the matrix not to be completely positive

Irrational boundary cases

(algorithm is known not to terminate)

EX: $A=\binom{\sqrt{2}}{I}\binom{\sqrt{2}}{l}^{\top}=\left(\begin{array}{cc}2 & \sqrt{2} \\ \sqrt{2} & l\end{array}\right)$

Irrational boundary cases

(algorithm is known not to terminate)

EX: $A=\binom{\sqrt{2}}{I}\binom{\sqrt{2}}{I}^{\top}=\left(\begin{array}{cc}2 & \sqrt{2} \\ \sqrt{2} & l\end{array}\right)$

The $\mathcal{C O} \mathcal{P}$-perfect matrix after ten iterations of the algorithm is

$$
B_{P}^{(10)}=\left(\begin{array}{cc}
4756 & -6726 \\
-6726 & 9512
\end{array}\right) .
$$

It can be shown that the matrices $B_{P}^{(i)}$ converge to a multiple of

$$
B=\left(\begin{array}{cc}
1 & -\sqrt{2} \\
-\sqrt{2} & 2
\end{array}\right) \text { satisfying }\langle A, B\rangle=0 \text { and }\langle X, B\rangle \geq 0 \text { for all } X \in \mathcal{C} \mathcal{P}_{2}
$$

Irrational boundary cases

(algorithm is known not to terminate)

EX: $A=\binom{\sqrt{2}}{I}\binom{\sqrt{2}}{I}^{\top}=\left(\begin{array}{cc}2 & \sqrt{2} \\ \sqrt{2} & l\end{array}\right)$

The $\mathcal{C O} \mathcal{P}$-perfect matrix after ten iterations of the algorithm is

$$
B_{P}^{(10)}=\left(\begin{array}{cc}
4756 & -6726 \\
-6726 & 9512
\end{array}\right) .
$$

It can be shown that the matrices $B_{P}^{(i)}$ converge to a multiple of

$$
B=\left(\begin{array}{cc}
1 & -\sqrt{2} \\
-\sqrt{2} & 2
\end{array}\right) \text { satisfying }\langle A, B\rangle=0 \text { and }\langle X, B\rangle \geq 0 \text { for all } X \in \mathcal{C P}_{2}
$$

References

- Mathieu Dutour Sikirić, Achill Schürmann and Frank Vallentin, Classification of eight dimensional perfect forms, Electron. Res. Announc.Amer. Math. Soc., I3 (2007).
- Achill Schürmann, Enumerating Perfect Forms, AMS Contemporary Mathematics, 437 (2009), 359-378.
- Achill Schürmann, Computational Geometry of Positive Definite Quadratic Forms, University Lecture Series, AMS, Providence, RI, 2009.
- Achill Schürmann, Exploiting Symmetries in Polyhedral Computations, Fields Institute Communications, 69 (20I3), 265-278.
- Mathieu Dutour Sikirić, Achill Schürmann and Frank Vallentin, Rational factorizations of completely positive matrices, Linear Algebra and its Applications, 523 (2017), 46-51.
- Mathieu Dutour Sikirić, Achill Schürmann and Frank Vallentin, A simplex algorithm for cp-factorization, Preprint, April 2018.

[^0]: AIM Square group 20 I2: GangI, Dutour Sikirić, Schürmann, Gunnells, Yasaki, Hanke

